電場変調吸収分光法による光合成細菌のアンテナ系 LH1 複合体中での カロテノイド分子の静電的環境の評価

○ 中川勝統¹・西村絵美¹・水野愛弓¹・出羽毅久¹・鈴木 聡²・
藤井律子²・橋本秀樹²・南後 守¹ (¹ 名工大院工・² 阪市大院理)

(E-mail; r06omh20@edsys.center.nitech.ac.jp)

【**緒言**】 光合成細菌の光合成膜では、光エネルギー変換機能をもつ膜タンパク質群 が協同的に集積している。この中で、アンテナ系 LH1 複合体は太陽光エネルギーの 捕集と反応中心への励起エネルギー伝達を高効率に実現している。これは、2 種類の 膜タンパク質(LH1-α&-β)がバクテリオクロロフィル(BChla)やカロテノイド色 素をリング状に巧妙に配列しているためであることが、結晶構造解析などから明らか になってきた[1]。しかしながら、LH1 複合体中のカロテノイド分子の構造と機能との 関係は未だ明らかでないことが多い。特に、カロテノイドがどのような静電的環境下 でその機能を発揮しているのか明らかでない。本研究では、界面活性剤中で再構成し た LH1 複合体の電場変調吸収スペクトル測定[2], [3]により、カロテノイドや BChla の非線形光学パラメータ(光誘起分極率変化 Tr(Δα)・光誘起双極子モーメント変化Δμ) を決定した。同様に、天然より単離した LH1 複合体中でのそれらのパラメータを決 定し、再構成体と比較検討した。

【実験】 紅色光合成細菌 *Rhodospirillum* (*Rsp.*) *rubrum* 由来の LH1-α & -β / BChl *a* 単量体 (B820 サブユニット型複合体) と スピリロキサンチン (Figure 1) とを単離 し、界面活性剤ミセル中で再構成した。 得られた吸収スペクトル (Figure 2) は、

Figure 1. Chemical structures of spirilloxanthin isolated from photosynthetic bacterium *Rsp. rubrum*. Conjugated C=C bonds (n = 13) is illustrated with red color.

BChl *a* Q_y帯 (λ_{MAX} = 880 nm) やカロテノイド範囲 (λ = 400 – 550 nm) で天然系と非 常に良く類似した[4]。また、CD スペクトルに加えて電場変調吸収スペクトル (Stark スペクトル)を測定した。Figure 3 に示した再構成体 LH1 複合体の電場変調吸収スペ クトルの測定結果より、BChl *a* Q_y帯とカロテノイドの吸収範囲でそれらに特徴的な スペクトルが観測された。このスペクトルから、BChl *a* とカロテノイドの非線形光学 パラメータ(光誘起分極率変化 Tr($\Delta \alpha$)・光誘起双極子モーメント変化 $\Delta \mu$)を決定した。 Table 1 で明らかなように、カロテノイドの非線形光学パラメータは BChl *a* よりも一 桁大きく、LH1 複合体中の結合部位においてカロテノイドが非常に有用なプローブで あることを見出した。また、このプローブ効果より、再構成 LH1 複合体中のカロテ ノイドの静電的環境が天然系と異なることがわかった。

Figure 2. Normalized absorption spectra of reconstituted LH1 complex in the presence of spirilloxanthin and native LH1 complex from *Rsp. rubrum* in 0.025vol% Trion X-100

本研究において、アンテナ系 LH1 複合体 を 2 種類の界面活性剤(LDAO と Triton X-100)を用いて単離し、膜タンパク質に 与える界面活性剤の影響を検討した。2 種 類の界面活性剤ミセル中で得られた天然系 LH1 複合体の吸収スペクトルは、ともに酷 似したにもかかわらず、CD スペクトル

 (Figure 4) では、BChl a Qy帯に由来する シグナル形状に明らかな差異が認められた。 isol さらに LH1 複合体中の色素群の非線形光 (Bl 学パラメータは、LDAO ミセル中のパラメータか 界面活性剤分子が LH1 複合体中の色素-色素相

Figure 3. Stark spectrum of reconstituted LH1 complex in the presence of spirilloxanthin, dispersed in PVA polymer films at room temperature.

Figure 4. CD spectra of native LH1 complex isolated from *Rsp. rubrum* in Triton X-100 (Black line) or LDAO micelles (Red line).

学パラメータは、LDAO ミセル中のパラメータが小さくなった。これらの相違より、 界面活性剤分子が LH1 複合体中の色素-色素相互作用や色素-タンパク質相互作用 に大きな影響を及ぼしていることがわかった。

Rsp. rubrum LH1 complex	BChl a		Carotenoid	
	$\operatorname{Tr}(\Delta \alpha) [Å^3/f^2]$	Δμ [D/ <i>f</i>]	$\text{Tr}(\Delta \alpha) [\text{Å}^3/f^2]$	Δμ [D/ <i>f</i>]
Reconstituted one in Triton X-100	430±14	4.7±0.1	1,300±42	7.3±0.2
Native one in Triton X-100	430±12	4.2 ± 0.1	$2,\!600\!\pm\!180$	10.4 ± 0.4
Native one in LDAO	290±38	3.7 ± 0.1	2,000±95	8.7 ± 0.4

Table 1. The nonlinear optical parameters, $Tr(\Delta \alpha)$ and $\Delta \mu$, of BChl *a* and carotenoids molecules in reconstituted and native LH1 complexes in Triton X-100 or LDAO micelles

[1] A.W. Roszak *et al.*, *Science*, **302**, 1969, (**2003**); [2] K. Yanagi *et al.*, *J. Phys. Chem. B*, **108**, 10334, (**2004**); [3] K. Yanagi *et al.*, *J. Phys. Chem. B*, **109**, 992, (**2005**); [4] K. Nakagawa *et al.*, *Carotenoid Science*, **9**, 15, (**2005**)