攪拌翼幾何形状が物質移動特性に及ぼす影響

村井孝臣 □ 亀井登（ダイセル化学） □ 多田豊 □ 加藤祥子 □ 長雄雄一郎

背景

固液系での物質移動係数 \(k_i \) は液単位体積あたりの動力 \(P_v \) で良好な相関が得られ、また液液系に関しては攪拌翼旋回体積あたりの動力 \(P_v \) で良好な相関が得られていることが報告されている。その結果より、それぞれの系における相関式が提案されてきた。

目的

いままでの研究では翼径と傾斜の比 \(d/D \) や翼幅 \(b \) の影響などの詳細な条件、および \(N_{js} \) 以下の領域にわたっての調査は十分になされていない。

実験方法

翼径と同じ高さとなるようにイオン交換水を入れる。初期濃度 \(C_i \) が1mol/lであるようCN5OHを投入し、パルク濃度 \(C_e \) を電気伝導度計より測定する。

そして電気伝導度計から読み取った \(C_e \) を用いて以下の式に代入する。

\[
 k_i = \frac{V}{A T} \ln \left(\frac{C_e}{C_i} \right) \\
 k_{e,a} = \frac{A}{V} k_i \\
 \text{縦軸に} \ k_{e,a} \text{をとることで得られた直線の傾きが} k_{e,a} \text{の値となる。}
\]

条件

種々の寸法のパドル翼を用い、固液系において支配される翼形状に関する相関パラメータについて調べる。

結果

翼径、翼幅を変化させるものは全ての領域において、また水位を変化させたものは \(N_{js} \) 以上の領域で \(b/H \) というパラメータで整理することで良い相関が得られた。