目次

1. 基礎編

第1章	流動特性	
1 • 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1 • 2	撹拌装置の構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1 • 3	撹拌対象流体 ・・・・・・・・・・・・・・・	2
1 • 4	フローパターン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1 • 5	撹拌レイノルズ数 Re	6
1 • 6	流体の停滞部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
1 • 7	旋回流速度分布と固体的回転部 ・・・・・・・・・・・・・	7
1 • 8	循環流量と吐出流量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
第2章	動力特性	
2 • 1	撹拌所要動力がなぜ重要なのか ・・・・・・・・・・・・・	12
2 • 2	撹拌所要動力測定法と動力数 ・・・・・・・・・・・・・	12
2 • 3	動力特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2 • 4	完全邪魔板条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
2 • 5	完全邪魔板条件における動力の推算式 ・・・・・・・・・・	15
2 • 6	邪魔板無し撹拌所要動力の推算式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
2 · 7	撹拌所要動力の推算式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
2 • 8	任意の邪魔板条件における撹拌所要動力の推算式・・・・・・・	18
2 • 9	ヘリカルリボン翼、アンカー翼の動力相関式・・・・・・・・・	20
第3章	混合特性	
3 · 1		22
3 · 2		23
3 · 3		26
3 • 4	混合時間の推算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
第4章	伝熱特性	
4 • 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
4 • 2		33
4 • 3	層流状態における熱伝達係数の無次元相関式・・・・・・・・	36
4 • 4		38
4 • 5	重合反応槽における除熱限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
第5章		
5 • 1	· · · · · · · · · · · · · · · · · · ·	42
5 • 2		43
5 • 3		45
5 • 4	W=11 / M 1 / M 1 / M M M M M M M M M M	46
5 • 5		47
5 • 6		49
5 • 7	物質移動係数とガスホールドアップ・・・・・・・・・・・・	50

第6章	固液混合		
6 · 1	はじめに		53
6 · 2	固体粒子の分散状態		53
6 · 3	固体粒子の沈降性の判定方法	(終末沈降速度の算出方法)・・・・・	54
6 · 4	完全浮遊化状態の判定方法		55
6 · 5	Zwietering の n _{IS} 相関式		55
6 • 6	槽内の粒子濃度分布と粒子懸濁	層の高さ ・・・・・・・・	59
6 · 7	固液物質移動係数		59
第7章	液液混合		
7 · 1	はじめに		63
7 · 2	液滴の分裂と合一		63
7 • 3	液液分散系の転相現象		65
7 · 4	相分散限界翼速度		66
7 · 5	分散液滴の平均液滴径ならびに	液滴径分布・・・・・・・・・・	67
7 · 6	撹拌所要動力		70
7 • 7	液液撹拌における測定例		70
	2.	トピックス編	
Ant 4 ===			
第1章	カオスとしての流体混合		7.5
1 • 1	流体混合のむずかしさ	本	75 75
1 • 2	新しい視点から流体混合を捉え	- 旦 9	75 70
1 • 3	カオス混合は何故起こる		79
1 • 4	混合領域を分割する KAM 曲線 流れ場の混合性を制御するもの		80
1 • 5			81
1 • 6	3次元の撹拌槽内における混合	`機件 • • • • • • • • • • • • • • • • • • •	82
第2章	混練		
2 • 1	はじめに		84
2 • 2	混合・混練メカニズムの分類		86
2 • 3	混練・分散評価の指標		86
2 • 4	溶融混練部の三次元樹脂流動解	『析 ・・・・・・・・・・・	91
2 • 5	実験による混練メカニズムの解	引明 ・・・・・・・・・・・・	91
2 • 6	数値シミュレーションによる評	益価の例 ・・・・・・・・・・・	92
2 · 7	今後の課題と取組み		95
第3章	非ニュートン流体の撹拌		
3 · 1	はじめに		97
3 • 2	非ニュートン流体の粘性挙動		97
3 • 3	撹拌所要動力		102
3 · 4	塑性流体の撹拌		104
3 · 5	まとめ		113

4・2 機械的混合・粉砕による結晶質固体の無定形化・相転移、固相合成・ 11: 4・3 メカノケミカル(MC)効果によるドーピングと固相合成の例・ 11: 4・4 「機械的混合・粉砕+溶液処理」の組み合わせによる資源処理・ 12: 4・5 むすび 12: 第5章 数値解析手法と応用例 5・1 はじめに 12: 5・2 撹拌流動解析手法の特徴 12: 5・3 撹拌槽内の流動解析事例 12: 5・4 混合評価 13: 第6章 撹拌槽側壁近傍での移動現象 6・1 撹拌槽側壁近傍の円間方向速度の相関 14: 6・2 撹拌槽側壁での速度境界層外縁速度からの境界層厚さの推算・ 14: 6・3 撹拌槽側壁での速度境界層外縁速度からの境界層厚さの推算・ 14: 6・3 撹拌槽側壁における速度境界層外縁速度からの境界層厚さの推算・ 14: 6・4 槽側壁における速度境界層外縁速度からの境界層厚さの推算・ 14: 6・5 翼相似パラメータ Xが小さい撹拌翼に対する un't と yn' の相関・ 15: 6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算・ 15: 6・7 Calderbank and MooYoung による相関と式(6.26)の比較 15: 7・1 はじめに 15: 7・2 流動状態の相似則 15: 7・3 エネルギー散逸の相似則 15: 7・4 ファニングの式 16: 7・5 球の流体抵抗 16: 7・6 撹拌所要動力 16: 7・7 エネルギースペクトル密度分布関数 16: 7・8 基本的スケールアップ則の信頼性・ 17: 7・10 円管のスケールアップ則 17: 7・11 おわりに 17: 11 おわりに 17: 12 駆動部の選定 17: 13 モータ 18: 15 変速操作 18:	第	4	章	固体の機械的混合・粉砕		
4・3 メカノケミカル (MC) 効果によるドーピングと固相合成の例・ 11・4・4 「機械的混合・粉砕+溶液処理」の組み合わせによる資源処理・ 12・4・5 むすび 12・5・2 抗性病動解析手法と応用例 12・5・2 抗性情例整立傍での移動現象 12・5・4 混合評価 13・6・4 提件情側壁立傍での移動現象 14・6・2 抗性情側壁立傍の円周方向速度の相関 14・6・2 抗性情側壁での速度境界層外縁速度からの境界層厚さの推算・ 14・6・3 撹拌情側壁での速度境界層外縁速度からの境界層厚さの推算・ 14・6・5 翼相似ベラメータ X が小さい境拌製に対する un と yp ローの相関 15・6・6 情側壁での普遍速度分布に基づく伝熱係数の推算・ 15・6・7 Calderbank and MooYoung による相関と式(6.26)の比較 15・7・2 流動状態の相似則 15・7・3 エネルギー散逸の相似則 15・7・3 エネルギー散逸の相似則 15・7・5 球の流体抵抗 16・7・5 球の流体抵抗 16・7・6 採拌所要動力 16・7・7 エネルギースペクトル密度分布関数 16・7・7 エネルギースペクトル密度分布関数 16・7・7 エネルギースペクトル密度分布関数 16・7・9 既往の撹拌槽スケールアップ則 17・7・10 円管のスケールアップ則 17・7・11 おわりに 17・11 おわりに 17・11 なりに 17		4	• 1	はじめに		115
4・4 「機械的混合・粉砕+溶液処理」の組み合わせによる資源処理・12 4・5 むすび 12: 第5章 数値解析手法と応用例 5・1 はじめに 12: 5・2 撹拌流動解析手法の特徴 12: 5・4 混合評価 13: 第6章 撹拌槽側壁近傍での移動現象 14: 6・2 撹拌槽側壁での音響を変換を変換を変換を変換を変換を変換をでの指関・14: 6・2 撹拌槽側壁での音響を変換を変換を変換を変換を変換をでの指関・14: 6・3 撹拌槽側壁の乱流境界層における日周方向速度の相関・14: 6・4 槽側壁における速度境界層外縁速度からの境界層厚さの推算・14: 6・5 翼相似パラメータ Xが小さい撹拌器に対する up ** と yp ** の相関・15: 6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算・15: 6・7 Calderbank and MooYoung による相関と式(6.26)の比較 15: 第7章 スケールアップ理論と実際 7・1 はじめに 15: 7・2 流動状態の相似則 15: 7・3 ボカルボー散逸の相似則 15: 7・4 ファニングの式 16: 7・5 球の流体抵抗 16: 7・6 撹拌所要動力 16: 7・7 なの流体抵抗 16: 7・7 なの流体抵抗 16: 7・8 基本的スケールアップ則 17: 7・10 円管のスケールアップ則 17: 7・11 おわりに 17: 3. 設計・応用編 第1章 駆動部の選定 18: 1・5 変速操作 18:		4	• 2	機械的混合・粉砕による結晶	質固体の無定形化・相転移,固相合成・	115
# 5 章 数値解析手法と応用例 5 · 1 はじめに		4	• 3	メカノケミカル(MC)効果に	よるドーピングと固相合成の例・・・	117
# 5 章 数値解析手法と応用例 5 · 1 はじめに		4	• 4	「機械的混合・粉砕+溶液処	理」の組み合わせによる資源処理・・・	121
5・1 はじめに 5・2 撹拌槽内の流動解析手法の特徴 5・3 撹拌槽内の流動解析事例 5・4 混合評価 13・3 攪拌槽側壁近傍での移動現象 6・1 撹拌槽側壁近傍での移動現象 6・1 撹拌槽側壁での速度境界層内線の定義 6・3 撹拌槽側壁のでの速度境界層における円周方向速度の相関 6・4 槽側壁のの速度境界層における四周方向速度の相関 6・5 翼相似パラメータ X が小さい撹拌翼に対する up ⁺⁺ と yp ⁺⁺ の相関 6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算 6・7 Calderbank and Moo Young による相関と式(6.26)の比較 15: 第7章 スケールアップ理論と実際 7・1 はじめに 7・2 流動状態の相似則 7・4 ファニングの式 16・6 撹拌所要動力 7・7 エネルギー散逸の相似則 7・4 ファニングの式 16・6 撹拌所要動力 7・7 エネルギースペクトル密度分布関数 7・8 基本的スケールアップ則 7・9 既往の撹拌槽スケールアップ則の信頼性 7・1 おわりに 3・設計・応用編 第1章 駆動部の選定 1・1 はじめに 1・2 駆動部の選定 1・1 はじめに 1・2 駆動部の形式 1・3 モータ 1・4 減速装置 1・5 変速操作 1・8						124
5・1 はじめに 5・2 撹拌槽内の流動解析手法の特徴 5・3 撹拌槽内の流動解析事例 5・4 混合評価 13・3 攪拌槽側壁近傍での移動現象 6・1 撹拌槽側壁近傍での移動現象 6・1 撹拌槽側壁での速度境界層内線の定義 6・3 撹拌槽側壁のでの速度境界層における円周方向速度の相関 6・4 槽側壁のの速度境界層における四周方向速度の相関 6・5 翼相似パラメータ X が小さい撹拌翼に対する up ⁺⁺ と yp ⁺⁺ の相関 6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算 6・7 Calderbank and Moo Young による相関と式(6.26)の比較 15: 第7章 スケールアップ理論と実際 7・1 はじめに 7・2 流動状態の相似則 7・4 ファニングの式 16・6 撹拌所要動力 7・7 エネルギー散逸の相似則 7・4 ファニングの式 16・6 撹拌所要動力 7・7 エネルギースペクトル密度分布関数 7・8 基本的スケールアップ則 7・9 既往の撹拌槽スケールアップ則の信頼性 7・1 おわりに 3・設計・応用編 第1章 駆動部の選定 1・1 はじめに 1・2 駆動部の選定 1・1 はじめに 1・2 駆動部の形式 1・3 モータ 1・4 減速装置 1・5 変速操作 1・8	第	5	章	数値解析手法と応用例		
5・3 撹拌槽内の流動解析事例 12:5・4 混合評価 13:3 第6章 撹拌槽側壁近傍での移動現象 6・1 撹拌槽側壁近傍の円周方向速度の相関 14:6・2 撹拌槽側壁での速度境界層外縁の定義 14:4・6・3 撹拌槽側壁の乱流境界層における円周方向速度の相関 14:6・4 槽側壁における速度境界層外縁速度からの境界層厚さの推算 14:6・5 翼相似パラメータ X が小さい撹拌翼に対する up ⁺⁺ と yp ⁺⁺ の相関 15:6・6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算 15:6・7 Calderbank and MooYoung による相関と式(6.26)の比較 15:7・2 流動状態の相似則 15:7・2 流動状態の相似則 15:7・3 エネルギー散逸の相似則 15:7・4 ファニングの式 16:7・5 球の流体抵抗 16:7・5 球の流体抵抗 16:7・6 撹拌所要動力 16:7・7・2 ボルギールアップ則の信頼性 17:7・10 円管のスケールアップ則 17:7・10 円管のスケールアップ則 17:7・11 おわりに 3. 設計・応用編 第1章 駆動部の選定 17:1 また 15:2 駆動部の形式 17:3 モータ 14:4 減速装置 18:5 変速操作 18:5 変速操作 18:5		5	• 1	はじめに		126
5・3 撹拌槽内の流動解析事例 122 5・4 混合評価 133		5	• 2	撹拌流動解析手法の特徴		126
# 6 章		5	• 3	撹拌槽内の流動解析事例		129
6・1 撹拌槽側壁近傍の円周方向速度の相関 14.6・2 撹拌槽側壁での速度境界層外縁の定義 14.6・3 撹拌槽側壁の乱流境界層における円周方向速度の相関 14.6・4 槽側壁における速度境界層外縁速度からの境界層厚さの推算・ 14.6・5 翼相似パラメータ X が小さい撹拌翼に対する up *** と yp *** の相関・ 15.6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算・ 15.6・7 Calderbank and MooYoung による相関と式(6.26)の比較 15.7・2 流動状態の相似則 15.7・3 エネルギー散逸の相似則 15.7・4 ファニングの式 16.7・5 球の流体抵抗 16.7・6 撹拌所要動力 16.7・7 エネルギースペクトル密度分布関数 16.7・7 エネルギースペクトル密度分布関数 17.7・10 円管のスケールアップ則 17.9 既往の撹拌槽スケールアップ則 17.1・10 円管のスケールアップ則 17.1・11 おわりに 17.1・11 おおりに 17.1・11 おりに 17.1・11 おおりに 17.1・11 おわりに 17.1・11 おりに 17.1		5	• 4	混合評価		137
6・2 撹拌槽側壁での速度境界層外縁の定義 14:6・3 撹拌槽側壁の乱流境界層における円周方向速度の相関 14:6・4 槽側壁における速度境界層外縁速度からの境界層厚さの推算 14:6・5 翼相似パラメータ X が小さい撹拌翼に対する uo ** と yo ** の相関 15:6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算 15:6・7 Calderbank and MooYoung による相関と式(6.26)の比較 15:7・2 流動状態の相似則 15:7・3 エネルギー散逸の相似則 15:7・3 エネルギー散逸の相似則 15:7・4 ファニングの式 16:7・5 球の流体抵抗 16:7・6 撹拌所要動力 16:7・7・1 などのが体抵抗 16:7・6 撹拌所要動力 16:7・8 基本的スケールアップ則 17:7・9 既往の撹拌槽スケールアップ則 17:7・10 円管のスケールアップ則 17:7・11 おわりに 17:1 おわりに 17:1 おわりに 17:1 な 15:1 は 15:0 変速操作 15:1 は 15:0 変速操作 18:1 後 2 変速操作 18:1 2 変速操作 18:1 2 変速操作 18:1 2 変速操作 18:1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	第	6	章	撹拌槽側壁近傍での移動現	象	
6・3 撹拌槽側壁の乱流境界層における円周方向速度の相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		6	• 1	撹拌槽側壁近傍の円周方向速	度の相関 ・・・・・・・・・・・	143
6・4 槽側壁における速度境界層外縁速度からの境界層厚さの推算・・・14 14 6・5 翼相似パラメータ X が小さい撹拌翼に対する up ⁺⁺ と yp ⁺⁺ の相関・156 15 6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算・・・15 15 6・7 Calderbank and MooYoung による相関と式(6.26)の比較・・・15 15 第7章 スケールアップ理論と実際 15 7・1 はじめに 15 7・2 流動状態の相似則 15 7・3 エネルギー散逸の相似則 16 7・5 球の流体抵抗 16 7・6 撹拌所要動力 16 7・7 エネルギースペクトル密度分布関数 16 7・8 基本的スケールアップ則 17 7・9 既往の撹拌槽スケールアップ則 17 7・10 円管のスケールアップ則 17 7・11 おわりに 17 第1章 駆動部の選定 10 1・1 はじめに 17 1・2 駆動部の形式 17 1・3 モータ 18 1・4 減速装置 18 1・5 変速操作 18		6	• 2	撹拌槽側壁での速度境界層外	縁の定義 ・・・・・・・・・・・	145
6・5 翼相似パラメータ X が小さい撹拌翼に対する up+ と yp+ の相関・156・6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算・・・・・155・6・7 Calderbank and MooYoung による相関と式(6.26)の比較・・・・155・7・2 流動状態の相似則・・・・・3 エネルギー散逸の相似則・・・・・3 エネルギー散逸の相似則・・・・・・166・7・5 球の流体抵抗・166・7・6 撹拌所要動力・166・7・7・10 円管のスケールアップ則・17・7・10 円管のスケールアップ則・17・11 おわりに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		6	• 3	撹拌槽側壁の乱流境界層にお	ける円周方向速度の相関 ・・・・・	146
6・6 槽側壁での普遍速度分布に基づく伝熱係数の推算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		6	• 4	槽側壁における速度境界層外	縁速度からの境界層厚さの推算・・・・	147
第7章 スケールアップ理論と実際 7・1 はじめに 15 7・2 流動状態の相似則 15 7・3 エネルギー散逸の相似則 15 7・4 ファニングの式 16 7・5 球の流体抵抗 16 7・6 撹拌所要動力 16 7・7 エネルギースペクトル密度分布関数 16 7・8 基本的スケールアップ則 17 7・9 既往の撹拌槽スケールアップ則の信頼性 17 7・10 円管のスケールアップ則 17 7・11 おわりに 17 3. 設計・応用編 第1章 駆動部の選定 17 1・2 駆動部の形式 17 1・3 モータ 18 1・4 減速装置 18 1・5 変速操作 18		6	• 5	翼相似パラメータ X が小さい	撹拌翼に対する u_{D}^{++} と y_{D}^{++} の相関・	150
第7章 スケールアップ理論と実際 7・1 はじめに 15 7・2 流動状態の相似則 15 7・3 エネルギー散逸の相似則 16 7・4 ファニングの式 16 7・5 球の流体抵抗 16 7・6 撹拌所要動力 16 7・7 エネルギースペクトル密度分布関数 16 7・8 基本的スケールアップ則 17 7・9 既往の撹拌槽スケールアップ則の信頼性 17 7・10 円管のスケールアップ則 17 7・11 おわりに 17 3. 設計・応用編 第1章 取動部の選定 1・1 はじめに 17 1・2 駆動部の形式 17 1・3 モータ 18 1・4 減速装置 18 1・5 変速操作 18		6	• 6	槽側壁での普遍速度分布に基	づく伝熱係数の推算 ・・・・・・	151
7・1 はじめに 15- 7・2 流動状態の相似則 15- 7・3 エネルギー散逸の相似則 15- 7・4 ファニングの式 16- 7・5 球の流体抵抗 16- 7・6 撹拌所要動力 16- 7・7 エネルギースペクトル密度分布関数 16- 7・8 基本的スケールアップ則 17- 7・9 既往の撹拌槽スケールアップ則の信頼性 17- 7・10 円管のスケールアップ則 17- 7・11 おわりに 17- 3. 設計・応用編 第1章 駆動部の選定 1・1 はじめに 17- 1・2 駆動部の形式 17- 1・3 モータ 18- 1・4 減速装置 18- 1・5 変速操作 18-		6	• 7	Calderbank and MooYoung によ	る相関と式(6.26)の比較 ・・・・・	152
7・2 流動状態の相似則 15-7・3 エネルギー散逸の相似則 15-7・4 ファニングの式 16-7・5 球の流体抵抗 16-7・5 球の流体抵抗 16-7・6 撹拌所要動力 16-7・7・2 エネルギースペクトル密度分布関数 16-7・7・2 エネルギースペクトル密度分布関数 17-7・7・2 エネルギースペクトル密度分布関数 17-7・8 基本的スケールアップ則 17-7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	第	7	章	スケールアップ理論と実際		
7・3 エネルギー散逸の相似則 156 7・4 ファニングの式 166 7・5 球の流体抵抗 166 7・6 撹拌所要動力 166 7・7 エネルギースペクトル密度分布関数 166 7・8 基本的スケールアップ則 177 7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 1	はじめに		154
7・4 ファニングの式 166 7・5 球の流体抵抗 166 7・6 撹拌所要動力 166 7・7 エネルギースペクトル密度分布関数 166 7・8 基本的スケールアップ則 177 7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 2	流動状態の相似則		154
7・5 球の流体抵抗 166 7・6 撹拌所要動力 166 7・7 エネルギースペクトル密度分布関数 166 7・8 基本的スケールアップ則 177 7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 3	エネルギー散逸の相似則		156
7・6 撹拌所要動力 16. 7・7 エネルギースペクトル密度分布関数 16. 7・8 基本的スケールアップ則 17. 7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 4	ファニングの式		160
7・7 エネルギースペクトル密度分布関数 16:3 7・8 基本的スケールアップ則 17:5 7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 5	球の流体抵抗		162
7・8 基本的スケールアップ則 17. 7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 6	撹拌所要動力		163
7・9 既往の撹拌槽スケールアップ則の信頼性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 7	エネルギースペクトル密度分類	布関数 ・・・・・・・・・・・	165
7・10 円管のスケールアップ則 176 7・11 おわりに 177 3. 設計・応用編 第1章 駆動部の選定 1・1 はじめに 179 1・2 駆動部の形式 179 1・3 モータ 180 1・4 減速装置 180 1・5 変速操作 180		7	• 8	基本的スケールアップ則		173
7・11 おわりに 3. 設計・応用編 第1章 駆動部の選定 1・1 はじめに 1・2 駆動部の形式 1・3 モータ 1・4 減速装置 1・5 変速操作 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 9	既往の撹拌槽スケールアップ	則の信頼性・・・・・・・・・・・	173
3. 設計・応用編 第1章 駆動部の選定 1・1 はじめに 1・2 駆動部の形式 1・3 モータ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		7	• 10	円管のスケールアップ則		176
第1章 駆動部の選定 1・1 はじめに 1.2 1・2 駆動部の形式 1・3 モータ 1・4 減速装置 1・5 変速操作		7	• 11	おわりに		177
1・1 はじめに 179 1・2 駆動部の形式 179 1・3 モータ 180 1・4 減速装置 180 1・5 変速操作 180				3.	設計・応用編	
1・1 はじめに 179 1・2 駆動部の形式 179 1・3 モータ 180 1・4 減速装置 180 1・5 変速操作 180	笋	1	音	取動部の選定		
1・2 駆動部の形式 1・7 1・3 モータ 1・4 減速装置 1・1 1・5 変速操作 1・1			-			179
1・3モータ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						179
1 · 4 減速装置 · · · · · · · · · · · · · · · · · · ·						180
1・5 変速操作 ・・・・・・・・・・ 18:						181
						183
						187

第 2 章	グラスライニング																			
2 • 1	グラスライニングとは	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		191
2 • 2	グラスライニングの構成	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			191
2 • 3	撹拌槽の概要	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			192
2 • 4	撹拌翼の選定	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		193
2 • 5	動力特性	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			195
2 • 6	混合特性	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			196
2 • 7	伝熱特性	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		197
2 • 8	設計上の注意点	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		198
第3章	• • • • • • • • • • • • • • • • • • • •																			
3 · 1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		200
3 · 2	シャフト設計手順	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		200
3 • 3	シャフトの設計	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		203
3 • 4	おわりに	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			211
第 4 章	撹拌槽における邪魔板効果と	応月	月伢	ij																
4 · 1	はじめに					•	•	•	•	•	•	•	•	•	•	•	•	•	•	212
4 • 2	撹拌諸特性に対する邪魔板効果					•	•	•	•	•	•	•	•	•	•	•	•	•	•	212
4 • 3	特殊な邪魔板形状について					•	•	•	•	•	•	•	•	•	•	•	•	•	•	217
第5章	往復回転式撹拌装置の開発・	応月	Ħ																	
5 • 1	はじめに	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		222
5 • 2	開発の経緯	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		222
5 • 3	往復回転式撹拌機	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,		223
5 • 4	パルスアジター	•	•	•	•	•	•	•	• 	• 	•	•	•	•	•	•	•	,		226
5 • 5	最新の研究・往復回転式撹拌機	アシ	ンタ	? —	- O) 🖥	長口	fi	通?	式 !	持化	生	•	•	•	•	•	•	•	229
5 • 6	おわりに	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			230
第6章	乳化																			
6 · 1	乳化					•	•	•	•	•	•	•	•	•	•	•	•	•	•	232
	乳化と撹拌操作					•	•	•	•	•	•	•	•	•	•	•	•	•	•	233
	タービン・ステータ型撹拌機					•	•	•	•	•	•	•	•	•	•	•	•	•	•	233
6 • 4	薄膜旋回型高速撹拌機					•	•	•	•	•	•	•	•	•	•	•	•	•	,	238
第7章																				
7 • 1						•	•	•	•	•	•	•	•	•	•	•	•	•	•	242
7 • 2						•	•	•	•	•	•	•	•	•	•	•	•	•	,	242
7 • 3		理				•	•	•	•	•	•	•	•	•	•	•	•	•	•	243
7 • 4	スタティックミキサーの特長					•	•	•	•	•	•	•	•	•	•	•	•	•	•	244
7 • 5	使用事例					•	•	•	•	•	•	•	•	•	•	•	•	•	•	245
7 · 6	おわりに					•	•	•	•	•	•	•	•	•	•	•	•	•	,	251